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Finite Curvature and Corrugations in
Dielectric Ridge Waveguides

T. ROZZI, SENIOR MEMBER, IEEE, GRAZIANO CERRI, FRANCO CHIARALUCE,
ROBERTO DE LEO, anp RICHARD F. ORMONDROYD

Abstract —Dielectric ridge waveguide is now widely used in passive and
active integrated optics, and it could find use in millimeter-wave circuits.
Families of devices such as ring lasers and couplers require structures with
bends of finite length and relatively high curvature. The paper presents a
technique, based on the concept of local modes, which also takes info
account the corrugations due to fabrication. Results are in good qualitative
agreement with experimental values reported in the literature.

I. INTRODUCTION

IELECTRIC RIDGE waveguides are now com-

monly used in integrated optics and millimeter-wave
technology in order to achieve lateral guidance. The effec-
tive dielectric constant (EDC) solution to this type of
problem was first presented in [1] and [2]. This method is
in fact very accurate for most practical purposes. A rigor-
ous solution to this problem by means of the transverse
resonance diffraction (TRD) approach is discussed in [3];
a full treatment by a substantially similar approach is also
given in [4].

With a view to integrating components and subsystems,
curved structures are extremely important for a variety of
reasons. The first is to reduce the area of material, and
therefore costs, but also to realize coupling regions and
resonators as well as to perform useful functions such as
mode stripping.

The infinite bend in an infinite dielectric slab and fiber
has received much attention in the literature from 1969
onwards [5], [6]; the reader is referred to existing textbooks
such as [7] for extensive references.

Finite, relatively sharp bends, however, are required in
integrated optics and especially short millimeter waves,
where the end effects play a more important role. These
are less well documented. An approach valid for paraxial
rays 1s described in [8], for instance. In particular, the
problem of propagation of a surface wave over a bend of a
finitely conducting surface is treated in [9] by means of the
“local modes” approach, of which more will be said in the
following.
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Much less is known about problems of bend in a ridge
waveguide, finite and infinite. A theoretical treatment of
the ring in a rib waveguide is found in [10], and the only
experimental data known to us in the literature on a finite
curve in a dielectric ridge waveguide seem to be those of
[11]. Also interesting are the results of {12] on the germane
problem of an image line bend and the theoretical treat-
ment with experimental verification on the nonradiative
waveguide given in [13]. In [11], the phenomenon of
“anomalous bending losses” in the optical dielectric ridge
waveguide is reported. This consists in the appearance of a
minimum in the loss versus radius of curvature (R) char-
acteristics in a curve guide of finite length.

It was surmised then that the presence of vertical corru-
gations of regular pitch and depth on the side walls of the
ridge are at the origin of this effect. These corrugations
arise from the fabrication process of the waveguides, and
as such their occurrence can be controlled to a certain
extent.

It is well known that the losses by curvature decrease
roughly exponentially with the radius of curvature and
therefore with the actual length of a bend of a given angle.
The corrugations perturb the guided field, causing it to
couple weakly to the radiation spectrum, an effect that
increases with the length of the guide.

In this contribution we analyze the combined effect of
finite curvature and corrugation in the dielectric ridge
waveguide and conclude that the occurrence of the mini-
mum is due to the balance of the two opposite effects over
a fairly broad region of R /A,. Numerical results, includ-
ing just these two contrasting effects, are in fact in agree-
ment with the experimental results of [11], well within the
scope of experimental and dimensional uncertainties.

In view of application to passive integrated optics and
millimetrics (e.g., GaAs waveguides on a substrate of
GaAlAs), the waveguide aspect ratio is such that the
guided modes can be considered as LSE or LSM rather
than full hybrid. On a straight section of guide, these two
polarizations are not coupled. The presence of the bend,
however, does cause some coupling to occur for relatively
small values of R /). depending upon aspect ratio. This
coupling effect is treated in [17] and is not considered
here; i.e., we retain only the LSE case. This simplification
considerably reduces the details of the analysis and high-
lights the essence of the method.
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The effect of curvature is studied by means of a gener-
alization of the “local modes” technique of [9]. In its
principal form, this approach involves developing the
transverse field (or potential) and its derivative along the
axis of the bend at a given section in terms of the set of
discrete and continuous modes of a straight waveguide of
the same cross section as the curved one. Obviously this set
varies along the bend in general, if the material parameters
and/or the radius of curvature vary, which makes the
technique very flexible indeed.

In its original form, however, the method is not well
suited to handling the problem of radiation except over a
very narrow paraxial beam, and serious convergence prob-
lems arise. We have studied in some depth the generaliza-
tion of the technique, exploring two alternative solutions.
As a result, we present in Section IV a semianalytical,
iterative approach that is easy to implement on the com-
puter and features excellent convergence under very gen-
eral conditions.

The effect of corrugations is studied by means of a
field-matching technique. The corrugation is modeled as a
step discontinuity [14], [15], and by imposing the continu-
ity of the tangential field, expressed in terms of discrete
and continuous spectrum, at the transition between two
contiguous sections, a transmission coefficient for the
propagating waves can be obtained. As a result, the behav-
ior of the EM field along the bend is described by a small
system of integrodifferential equations (typically one or
two), which is solved in conjunction with the field match-
ing to take into account the corrugation.

In fact, the technique presented here is of much wider
application in the microwave and millimeter-wave range,
for instance, to the situation where discrete step discon-
tinuities are deliberately inserted in a bend as matching
elements or impedance transformers.

II. MODES OF THE RIDGE WAVEGUIDE

The spectrum of the ridge waveguide can be described in
terms of the LSE/LSM mode families, derivable from
y-directed Hertzian potentials. Restricting ourselves to the
LSE case, in view of the aspect ratio of the ridge, the field
components are given by

E. = wupIl (1a)
E =0 (1b)
E,= — jopd II (1c)
H, =9; 1l (1d)
H, =BT — 9211 (le)
H, =~ jBa 1l (1f)

where II is the Hertzian potential (Il=1Ila,) and the
appropriate boundary conditions are imposed. The EDC is
defined in each region of Fig. 1:
Ll ]2
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By use of the EDC technique, equations (1) reduce to a
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Fig. 1. Cross section of a ridge waveguide.

simplified TM form and the detailed expression for field
components, normalization, and continuous spectrum are
given in Appendix I.

III. THE BEND PROBLEM

By means of the EDC technique, the 3-D problem of the
bend in Fig. 2 has been reduced to a 2-D one, as shown in
Fig. 3, where the geometry of the bend is also defined.

It is now important to introduce the concept of “local
modes” [9] at an arbitrary cross section z = z,,. These are
defined as the eigenfunctions of a straight guide whose
cross section is the same as that of the curved guide at
z = z,. As such, they are solutions of the wave equation

02, + (e ks = B7 )4, =0 (3)
in each piecewise homogeneous region and where it is
explicitly noted that

e, =¢,(z) (4a)

b=, (x,2). (4b)

However, if the radius R is assumed constant, and e, is
also constant, then ¢, is also constant with z.

The more general form above is useful in cases where
the geometry loss (or gain) of the guide is not uniform in
z. Let ¢ denote a scalar component of the global field. In
our (TM) case it represents the magnetic H, component

(E, in the TE case); both the latter and its z derivative can
be expanded in terms of the ¢, as

N oo
o= Y Co,+ X fo Cx)v(x)dx (5
p=—-N p==x
d N
d—?=—j Z Bllcllll}ll
~ v=—N

i T [TA0GH¥dx (6
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Fig 3 Equivalent bidimensional structure after using EDC.

where x denotes the continuous index, and » and p 20
denote waves traveling in the positive and negative z
direction, respectively. C,. C,(x) are the unknown ampli-
tudes of the “local modes” ¢, ey (x), respectively. Equa-
tion (5) follows directly from completeness; (6) is an
important consequence of the property of the modes to be
local solutions of the wave equation.

Equating identically the z derivative of (5) to (6) and
using the wave equation for ¢, the following system of
integrodifferential equations results:

N
(Yo =7:)
Z S)IV Dlle/

D)=
p=-N
4 /S’W(X)D“(X)e/(v,rﬂu(x)lw)dx
p=x"0
n=—N---+N (7)
N
D) (o) = X S/,(o)De/Pniorkem)

v=—N

o0
+ /(; S”(U.X)DH(X)e/R‘i’(Bm(")*B,L(X)) dx,
4

p=

m=+ (8)

where S, denotes the coupling coefficient between two

discrete modes, S,, and S, between a discrete mode and

a continuous component, and S#( 0, xX) between two con-
tinuous components. The D’s are obtained from the am-
plitudes of the C’s defined in (5) and (6) by conveniently
collecting the “fast” phase variation, i.e.,

C,(¢)=D,(¢)e™ )
C(6.x) =D, (¢, x)e BOR? (10)
where

(11)
(12)

v=[ Bdz'=R /O“’Bnd¢,

B}?(X)=62k8+xz Bn:_Bn‘
Details are given in Appendix II.

IV. SOLUTION OF THE INTEGRODIFFERENTIAL
EQUATIONS

The system of equations comprising (7) and (8) is in-
tegrodifferential of the first order and in principle it can be
solved by various techniques. The difficulty consists in the
fact that (8) depends on a continuous index x and, as
such, corresponds to a continuous infinity of equations. It
may be useful to consider briefly the approaches that were
attempted.

In [9] the method of discrete sampling over the anges of
radiation was originally proposed. In practice, it is found
that the resulting large system of discrete equations is
numerically unstable for all but a small number of sam-
pling angles, ideally centered around a paraxial beam. We
also tried the method of a discrete integral transform of
the continuous spectrum by means of weighted Laguerre
functions, as originally described in [16] for application to
discontinuity problems. While numerically more stable
than the preceding one, this approach also shows poor
convergence in the case of small differences of refractive
indices.

The approach we eventually followed, with satisfactory
results under all conditions, is the contraction and iterative
solution of the system, as described below.

The following nonessential simplifications are now in-
troduced for the sake of clarity.

a) We consider a single guided mode.
b) Reflected waves are neglected for both the discrete
and continuous spectrum.

Moreover, the following essential simplification 1s physi-
cally well justified, namely, that the weak coupling of the
continuum to itself is neglected.
The system comprising (7) and (8) is then reduced to
Di($) = [T Si(x)D(x,$)e WRBCO By (1)
0

D'(x.0)=S" (x)D,(¢p)e /RIA=FC

The index o (odd) has been introduced in order to point
out that the fundamental even mode excites the odd com-
ponents of the continuum spectrum only.

(14)
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We integrate the second equation above, obtaining

D(x,9) = f¢ ?S1 (x) Dy (§) e TRIB=FOOK gt 1 D(x, ¢)

(15)
where ¢, denotes an initial angle, which we normally
assume to be zero, with D(x,0)=0. We are now in a
position to substitute (15) into (13), obtaining an integro-
differential equation for the guided mode only:

Di(8) =[5 )| [Dil5)e 45 Bt gt

.e*JR[ﬁ(x)fﬁlldz'dX.

(16)
The integral over { in the angle interval 0 <{< ¢ is
carried out in a convenient, semianalytical iterative manner.
This is done by dividing the interval into N equal subinter-
vals of width A¢, so that ¢ = NA¢, and assuming the
following linearization of the unknown amplitude D; over
each interval n (1<n < N):
Dln(gl) :an+bn[§~
In particular, we have

D}, (nA¢) =b,.

Owing to the above linearization, we obtain from (16)

b= [7S-.(x)S4,(x)

(n—1)A¢]. (17)

(18)

TN ORI )
=1 (m—1Ap

(19)

Equation (19) now lends itself to simple quadrature, lead-
ing, finally, to an iterative expression that links the coeffi-
cients a,, b,:

n*“n

b, {auto-

'/{1‘A¢10"[Jo_~]1]} (20)

where a, =1 is the initial amplitude of the guided mode,
and the expressions for J, and I, are reported in Appen-
dix III together with the detailed derivation of (20) from
(19). For a smooth curve, the linearization (17) can be
further simplified:

ce IRIBI-BOOK d{:le]R[B(X)Bl]nA¢ dx.

n—1

—ad,+ X [bu(J, Jnﬂ_’m)l}

m=1

+1=bnA¢'+an' (21)

The above, together with (20) and the initial condition
a, =1, is sufficient to determine all the amplitudes a,, b,.

In the presence of corrugation, however, a, becomes
discontinuous at each change of width as

a +1=T(bnA¢+ an) (22)

where T is the transmission coefficient from a section to
the next to be determined in the following.

It is noted that the above procedure lends itself to easy
numerical evaluation and is stable with respect to the
variation of geometrical and material parameters.

V. THE EFFECT OF CORRUGATION

As mentioned in the Introduction, the fabrication pro-
cess of ridge waveguide creates a vertical corrugation on
the side walls of the ridge, as shown in Fig. 4. Again by use
of the EDC technique, one is reduced to the equivalent
structure of Fig. 5, which illustrates the geometry under
consideration.

The pitch of the corrugation normalized to wavelengths
is such that it is possible to identify the angle interval A¢
employed in the integration of Section IV with the angular
interval corresponding to the pitch over the radius of
curvature, i.e., the angle that corresponds to a single corru-
gation, though this identification is not essential. The
corrugation depth is roughly the same as the pitch, so that
it can be considered as a small step discontinuity, i.e., such
that reflected waves can be neglected, again, a nonessential
simplification. With reference to Fig. 6, let us consider a
discontinuity at z = z,, in passing from a section of width
2d to one of width 2D; the tangential field in z =z, and
in z = zg, can be expressed as

bluesy = Colz () + [ 7€ (a5 0¥ x, ) dx
(23)

“(z9, x)¥ex, x) dx

+ [T (25 x) 910 x) dx
¢'|:=z(}" =C (Zg)¢1r(x)+f

[ e
where the superscript e means even and o means odd, so
that $§(x. x), ¥{(X, %), ¥E(x, %), $2(X. x) represent the
even and odd continuous components on the left (/) and
the right (r) of the transition respectively, and ¢, ¥,
denote the corresponding discrete modes at the two sides
of the discontinuity.

By imposing continuity of the tangential field in z = z,
and using the orthonormality properties of the modes, it is
possible to write the expressions for the amplitude of the
“local modes”:

)=o)
et 22 ha

er(s50) =) | 2 ) et )

C(z5,x) =C"(25,x) (27)
where the bracket symbol ( - - - ) denotes integration in the
range — oo <x < +00.

It is noted that in the application considered here, the
amplitude of the (even) continuum excited by the discon-
tinuity is at least three orders of magnitude smaller than
that of the guided mode. It is permissible therefore to
neglect the interaction via the continuum between succes-

(25 x)¥2(x, x) dx (24)

\Plltplr>

- sive steps.
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Fig. 4. Photograph showing edge corrugations of a ridge waveguide.

Fig. 5. Equivalent bidimensional structure of a curved waveguide with
~ edge roughness.
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Fig. 6. Corrugations as step discontinuities.

The transmission coefficient of the transition between
two contiguous piecewise uniform sections for the funda-
mental mode is therefore given by

T=<%> - (28)

This transmission coefficient is required in (22), which is
then employed together with (20) in order to find all the
values of a,, b, iteratively for a corrugated guide.

V1. EXTENSION TO OVERMODED WAVEGUIDE

With a procedure quite similar to the one described in
Section 1V, the iterative method can be extended to a
waveguide which can support two or more modes. Let us
consider, in particular, the bimodal case, where the funda-
mental (even) mode and first higher order (odd) mode are
propagating. Under the hypothesis of negligible coupling
between the continuous components of the spectrum, the
differential equations for the odd continuum, excited by
the fundamental mode, and the even continuum, excited
by the second mode, can be eliminated analytically, in a
manner analogous to that described in Section IV.

After substitution, two coupled differential equations
for the surface waves, analogous to (16), are obtained. An
appropriate linearization, of the same kind as in (17), for
the unknown amplitudes D; and D, over each interval is
introduced, leading to a system of linear equations which
generalizes (19).

The final iterative expression corresponding to (20) has
the following matrix structure:

Ell E12 bl Pl
n n | n — n (29)
E} EZ||by]| |B;
where
El'=E? =1 (30a)
Slz P A
EP=— A(p?e—/(Bl—Bl)Rn ] (30b)
21 Sa ~j(B1—B;) Rndo
E-=- A(j)—Bie 17 (300)
Pl= Siz 2,~j(B2a— B Rnbe " 30d
n };ﬁane k +__—f ( )
pP= Sa 4 —j(BL—By)RnAp ; 30
n E?ane + 2 ( e)
with
n—1
Av=afl§~afli+ X bf(JE,—J5 ) (30f)
i=1
BF=1—-Adelf —(Jf—Jf), k=12  (30g)

where the indices 1 and 2 refer to the corresponding
modes.

Equation (29) has to be used in conjunction with the
following one, describing the effect of the step discontinu-

ity:

1S
30 ox-

(31)

>
<
+

i I bi
2. Lo 72|82

4,41

Q

‘and the initial condition aj =1, a? = 0.

All the elements I}, J! are reported in Appendix III, T*

has the form (28). The elements 12, J2, T? are obtained
from the ones relative to the first mode replacing the
corresponding parameters of the second mode and the odd

continuous spectrum with the even continuous spectrum.
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VIL

A computer program has been developed in order to
analyze the corrugated curved ridge waveguide. The fol-
lowing parameters were assumed in the calculations:

RESULTS

n =1
n,=344
ny=3.4
t=0.6pm
h=1pm
2d=1.5pm.

Both the depth and the width of the corrugations were
taken as 100 nm, for a 90° bend. The resulting waveguide,
for Ay =1.15 pm, is monomode.

In Fig. 7, the behavior of the field along the bend is
shown for structures with radius of curvature R =50\,
without and with material losses (attenuation coefficient
2B =4.8 cm™') and without and with corrugations. It is
noticeable how, for a short arc length, the effect of corru-
gation is negligible; oscillations of the amplitude of the
fundamental mode are due to a back coupling of the
continuous spectrum with the guided mode itself: this
phenomenon is quite evident if the material is ideal, while
even small losses prevent energy from going back into the
guide.

The effect of material losses is now examined: a small
negative imaginary part of the same magnitude was intro-
duced in both n, and n, to give a prescribed imaginary
part of the propagation constant of the surface wave along
the z direction (8 =8'— j8"); 28”=0,2,4.8,8 cm™ L.

The amplitude of the fundamental mode for a R =501,
guide is reported in Fig. 8 for the above values of B”.

The amplitude of the guided mode in a material with
low losses (28" =4.8 cm 1) is given for bends of various
radii of curvature, neglecting corrugations (Fig. 9) and
considering corrugations (Fig. 10). As previously men-
tioned, as the radius R increases, the effect of corrugations
is increasingly noticeable.

In Fig. 11 the radiation pattern at the onset of the bend
shows the preferential angles of radiation from which
energy is lost: angles are considered from the tangent to
the guide.

In order to make a comparison with experimental data,
a ridge waveguide with the following characteristics was
analyzed:

ny=1
n,=3.44
ny=335
t=0.4pum
h=0.8pm
2d =3 pm.

The depth and the width of corrugations were assumed to
be 70 and 100 nm, respectively, which is of the right order
of magnitude of the actual geometry. A small negative

80
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Fig. 7. Amplitude of the field versus arc length for a bend with R =

50A,. Without material losses and (a) without and (b) with corruga-
tions. With material losses and (c) without and (d) with corrugations.
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Fig. 9. Ampltude of the field versus arc length for bends with various

radii of curvature without corrugation.

imaginary part was introduced in #,, n, in order to get an
attenuation coefficient 28" =6.9 cm™!, for A, =1.15 pm.
Such was the structure experimentally investigated in [11].
With these dimensions, the guide supports in fact three
LSE modes, the (even) fundamental, the (odd) first higher
order mode, and the (even) second higher order mode. As
the latter does not couple directly to the fundamental
mode, the effect of its presence is negligible.

With respect to ‘the monomode guide, a different loss
mechanism for the fundamental mode (the only one pre-
sent at the beginning of the curve) can be observed. In the
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Fig. 10. Amplitude of the field versus arc length for bends with various
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Fig 11 Radiation pattern at onset of bend.
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Fig 12. Amplitudes of (a) the fundamental and (b) the first higher

mode for a corrugated bend with R = 4007,

previous case, in fact, bending losses were due entirely to
the strong coupling between the surface wave and the
(0odd) continuum. In this case, however, the stronger cou-
pling between the fundamental mode and the first higher
order (coupled by curvature), as well as the coupling
between the first higher order and the (even) continuum,
dominates.

In Fig. 12 this effect is shown: the moduli of the
fundamental and first higher modes are plotted as a func-
tion of the arc for a corrugated bend with R = 400A .

In Fig. 13 the losses versus radius of curvature are
finally reported for various values of the depth of corruga-

2(D-d)

0.0/ um
0.05 um

: curve a
+ curve b
0.04 um
0.03 pm

: curve ¢
: curve d
- curve e

0 Hm

= 0 um
= curve f (no material losses)

experiment

o

Fig. 13. Losses as a function of radius of curvature: numerical results
for waveguides (a) without and (b) with corrugations. Dots represent
experimental data from [11].

tion, 2(D — d). In particular, curve e refers to the structure
without corrugations and f gives the losses due to radiation
only (no corrugations, no material losses). Dots represent
experimental data inferred from [11] after subtracting the
remaining overall experimental losses (i.e., input and out-
put coupling), these were estimated at —11.5 dB, but their
actual magnitude is uncertain. Also uncertain are the pitch
and the depth of corrugation of the actual structure. A
minimum value of the losses corresponding to an optimum
radius of curvature can be noted when the effects of
curvature and corrugations are balanced.

VIIIL.

We present a development of the “local modes” tech-
nique which is capable of handling finite, tight bends in
open dielectric waveguides of the LSE—LSM type, to-
gether with step discontinuities along the arc. By analytical
manipulation of the continuum, the approach resulis in a
small system of coupled integrodifferential equations, one
for each discrete propagating mode. The latter system is
solved analytically by means of an iterative approach to
the point where it can be implemented on a desktop
computer.

The method was applied to the curved, corrugated,
dielectric ridge waveguide, yielding numerical results in
general agreement with published experimental points. The
technique is equally applicable to other curved open trans-
mission media in the microwave, millimetric, and in-
tegrated optics ranges.

CONCLUSIONS



ROZZL et al.: FINITE CURVATURE AND CORRUGATIONS IN DIELECTRIC RIDGE WAVEGUIDES R 75

APPENDIX |

A. Surface Waves

If regions I and II in Fig. 1 are taken to be infinitely
long in the x direction (4, =0), we have two layered
asymmetric slab waveguides, and the field components are
given by

ES = ¢ (y) (Ala)
B
glan - T um Alb
0= () (ATb)
—-J
an — 7 5 gL
HIT = 29,0100 ) (Ale)
where
AT e (KX ) 4 10D g 10D ).
an 0<y< (A2a)
¢ =
(») B1<11>e7h1(m<y—ym)>’ Y= Vi (A2b)
ClWe+n ™y -y <0, (A2¢)

By applying the boundary conditions for E, and H_, the
eigenvalue equations for even TE and odd modes are
obtained, and from the wave equation, the conservation of
wavenumber results:

(hy,2 _ 2 g 2K _ 211 2 _ 2110 2
ek =¢,k§ ky( )= yHAD ¢ kS =D 4 e k5.

(A3)

In order to analyze the x variation (d,=0) using the
concept of EDC, we consider the following fields:

E = A ¥(x) (Ada)
Ee(JJEO
-J
E, = a.¥(x) (Adb)
ceweo
H, = ¥(x) (Ade)
where
Accos(k,y, ), x|<d
¥(x)= ( ) Ceed 1l (A5a)
Accos(k, d)e w4 |x|=d
for even modes, and
A’sin(k x), x| <d
Y(x)= AS5b
() lxlA"sin(kxd)e“y"x‘d'” |x|>d (asb)

X

for odd modes.

Boundary conditions for E. give the eigenvalue equa-
tions for TM even and odd modes, which, in conjunction
with the following expressions, obtained from the wave
equation .

podg-ii-dgeyl (a0

allow the determination of propagation constants and field
configuration for the surface waves.

The normalization constant A4¢® is evaluated by the
requirement

+o0 2 (x)
f — =1 (A7)
—® Ge(X)
to be
€
A = 1 . P)
e 1 sin(k,d)cos(k . d) e
dt -+ - s
e Yx X EE
(A8)

where the sign + is for even modes and sign — is for odd
modes.

B. Continuous Spectrum

The continuous spectrum, together with the surface
waves, constitutes a complete representation of the field in
the slab. H, is given by H, = ¥(x;, x), where

(I
= cos[x(x+d)—a,],
T
x<—d (A9a)
el 1
¥e(x, x) = — —cos(sx),
—d<x<d (A9b)
(I
— cos[x(x—d)+a,],
7
x>d (A9c)
with
s2=x2+(e£-—eg)k§, 0<x<oo (Al0a)
I 2
C,=1/cos?(sd)+|—F | sin®(sd) (A10b)
. X€ |
NS
a, =187 || —5 |rg(sd) (A10c)
X€e
for even TM components and
€H
-\ = cos[x(x+d)+a,],
. .
x<—d (Alla)
el 1
Wo(x.x) = — Fsin(sx),
—d<x<d (Allb)
il
Ee
V= cos[x(x—d)—a,],
m
x>d (Allc)
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with

s2=x2+(€£—€?)k§, 0<x<owo (Al2a)

T2
C,= \/;in2 (sd)+ [;:_1} cos? (sd) (A12b)

e

sl
=g~ Y| —F |cotg (sd) (A12¢)
X€,
for odd TM components.
APPENDIX I
For the system of local coordinates of Fig. 2,
1
3,=9, p=R+x —0,=0. (A13)
p

the wave equation can be written as
2, 1 1, 2
2+ —d,+ =503 |0+eki®=0. (A14)
p p
After differentiating (5) with respect to z, equating it to

(6), and recalling (A13),

N

Y (G +/RBG)Y,

v=—-N

+ ; fom[C,[(x)Jr JRB,(x)C,(x)] ¥ (x) dx

N
=—j X BCxy,

v=—N

i X [TRO0GO0x¥(x) dx

DA

where the prime indicates differentiation with respect to z.
Substituting (5) and (6) together in the wave equation
(Al14), yields

N
- X Cyl-

v=—N

(x)¥'(x) dx (Al5)

N 1
Z |:3p2+ Eéh,:lcyxp”

v=-N

+Zf

h==x

“i{ Z 8¢(:8ucv¢v)
Ply——n

x){t? +— 9}P(x)dx

+ ¥ [ ¢[B(X)C(x)¢(x)]dx}

p==x

+ 72 Ceokitst L [ G0e kg (x) dx =0,
(A16)

By multiplying by p = R + x, carrying out the ¢ differenti-
ation explicitly, recalling (A13), and using (3), (A16) be-

comes

N [oe]
Y GBRY,+ ¥ /O C,(x)B2(x)Ry(x) dx

v=~—N n=

N
- ]{ Z (ﬁv’Cvlpv + BvCullibv + Buculibz)

v=-N

fo GOV +B.(x)C ()Y (x)

+B,(x)C(x)¥'(x)] dx

+ Z G+ X [ G008 008 () dx

-4
. Z [ a(x)a4(x) dx=o0.
V== N = f 0
(A17)
Multiplying (A15) by v, /€,(x) and integrating and simi-
larly for (A17), using the following orthonormality proper-
ties for “local modes™:

< ‘P:‘P” > =8, (A18a)
< —~—¢"i(><) > =0 (A18b)
<£—(2<—i—¢——(—o—)—>=6(x—o) (A18c)

we obtain

> (C/+ JRBC,)

v==+n

- L fowﬁu )C(x><¢ “x )>dx

< X)>dx

N
- X C<¢"¢> Zf
(A19a)
+(C/ + BCR)

N B B, <w;>
= 6 nlv +
» =Z_ N[,Bm\ . :B|n| €
B} [ b,x, 1 [y,0.9,
+j'8|n|< €. >+j/8|n|< €e >
p= B|)11 €,

B (x) < ¢nx¢(x)>
:3|n|

RS <¢,, K2 x)>
18|n] €

€

C(x) (A19b)
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Recalling that 8, = —8,, upon adding and subtracting
(A19a) and (A19b) we obtain the integrodifferential equa-
tions for the amplitudes of the surface waves:

Gt BRC= T 8,0+ z L5060 dx

v=—N
(A20)

where n=—N,---, -, N and

1 . ‘PnXva ‘Pn\P;l BV/
Snu == E l:]Bv< €, > + < €, > * msnlﬂ

+/3y<~m;> /32<¢,,x¢,>
" By 'B|n| €e

(A21a)

S(3) =~ {B( ><"’ "’(X)>

< (x)> B.(x) < ¢,,¢’(x)>
+ 18|ni €,
JE 2(x) < ¥, (x) >
B B|n| €,

1 [ 4,04(x)
i]'B|n|< €e > .

Two equations similar to (A19a) and (Al19b) can be
achieved by multiplying (A15) and (A17) by ¢(0)/€ (x)
and integrating, using again the orthonormality properties
(A18); hence by adding and subtracting, the integrodif-
ferential equation for the amplitude of the continuous
spectrum 1s obtained:

C,(o)+ jRB,(s)C,

(A21b)

(o)
= X Si(o)G+ Y f S, (s, x)C(x)dx (A22)

p=x

where m = + and

e 0]y
B [vow\ B [ w(o)xw.
iB(o,)< .. >i/,8(o)< ! >

L] <¢(o)ax¢y>
B0\

(A23a)

(o )X\P(x)>

€

S.(o,x)=—% [B( )<

+<¢(0)¢’(x)> B/(o)

B(o)

B.(x) < ¢(0)¢’(x)>
~ B(o)

RACY < $(@)x9(x) >
*8(a) ‘.

1 [ 4(o)dd(x)
i/3(o)< . >

APPENDIX III

6 (x=o)

14

€.

(A23b)

By evaluating the integral over { in (19) we obtain

= Z [anl(ln*ﬂl_

m=1

In+1—m)

+bmA(i)In‘m_‘_bm(Jn~m_Jn+l‘m)] (A24)
where

e/1Bi—BOOIRmAG

b= TR T RTR S 00SG) dx (A25a)

e 1Bi—BCOIRm Ao

= | ————=87(x)S{°(x) dx. (A25b)
fo (8- B(x)]"R?
Recalling that
am+bm Aqb:anﬂ-l (A26)
(A24) can be expressed as
n
b,=a,l,—al,+b,Ao: I+ 3 b, (J =Ty mi1)
m=1
(A27)
which becomes
bn [1 - AQSIO _(']0 - Jl)]
n—1
=a»110_alln+ Z bm(Jn—m_']n+1—m) (A28)
m=1

leading to (20).

Integrations (A25) cannot be performed merely by
numerical techniques, owing to an integrable singularity in
S7°(x) and because the exponential term can be a rapidly
oscillating function; on the other hand, asymptotic evalua-
tion, with the method of say, stationary phase, gives inac-
curate results.

However, operating a change of variable

X = nyk,sind
B(x) =n,kycos8

the singularity in S7°(x) is removed and, restricting in-
tegration to propagating waves only, the domain becomes

(A29a)
(A29b)
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0 < 6 < /2. This truncation does not affect in practice the
values of the integrals because the integrand involving the
evanescent components of the continuous spectrum is
several orders of magnitude smaller than that involving the
propagating components.

Subdividing the interval of integration into L subinter-
vals (A8 =7 /2 L), equatioris (A25) can be written as
L

Im(Jm.) _ Z j('jAﬂl)Aaej('gl,nszCOSH)RmAquI(J)(H) 46
(=10~
(A30)
where
- 57(8)S{°(8)nykycosh
fl(e) = _ j[Bl—nzkocosﬂ]R (A3la)
S2(8)S:°(8)n,kycosl
fj(a)z 1()1() 2K (A31b)

[B,— n,kycos8)*R?

If in each subinterval (/—1) A0< 0 <1A8, we assume a
linearization of (A31a) and (A31Db),

FI(8) = A1D sin + B/ sinfcosd  (A32)

with constants A4,, B, the integral (A30) can then be easily
evaluated in a closed form. The value of L is chosen so as
to obtain the best fit in (A32).
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