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Finite Curvature and Corrugations in
Dielectric Ridge Waveguides

T. ROZZI, SENIOR MEMBER, IEEE, GRAZIANO CERRI, FRANCO CHIARALUCE,

ROBERTO DE LEO, AND RICHARD F. ORMONDROYD

Afrstracf — Dielectric ridge waveguide is now widely used in passive and

acti~e integrated optics. and it could find use in millimeter-wave circuits.

Families of devices such as ring lasers and couplers require strnctores with

bends of finite length and relatively high curvature. The paper presents a

technique, based on the concept of local modes, which also takes into

account the corrugations due to fabrication. Results are in good qualitative

agreement with experimental values reported in the literature.

I. INTRODUCTION

D IELECTRIC RIDGE waveguides are now com-

monly used in integrated optics and millimeter-wave

technology in order to achieve lateral guidance. The effec-

tive dielectric constant (EDC) solution to this type of

problem was first presented in [1] and [2]. This method is

in fact very accurate for most practical purposes. A rigor-

ous solution to this problem by means of the transverse

resonance diffraction (TRD) approach is discussed in [3];

a full treatment by a substantially similar approach is also

given in [4].

With a view to integrating components and subsystems,

curved structures are extremely important for a variety of

reasons. The first is to reduce the area of material, and

therefore costs, but also to realize coupling regions and

resonators as well as to perform useful functions such as

mode stripping.

The infinite bend in an infinite dielectric slab and fiber

has received much attention in the literature from 1969

onwards [5], [6]; the reader is referred to existing textbooks

such as [7] for extensive references.

Finite, relatively sharp bends, however, are required in

integrated optics and especially short millimeter waves,

where the end effects play a more important role. These

are less well documented. An approach valid for paraxial

rays is described in [8], for instance. In particular, the

problem of propagation of a surface wave over a bend of a

finitely conducting surface is treated in [9] by means of the

“local modes” approach, of which more will be said in the

following.
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Much less is known about problems of bend in a ridge

waveguide, finite and infinite. A theoretical treatment of

the ring in a rib waveguide is found in [10], and the only

experimental data known to us in the literature on a finite

curve in a dielectric ridge waveguide seem to be those of

[11]. Also interesting are the results of [12] on the germane

problem of an image line bend and the theoretical treat-

ment with experimental verification on the nonradiative

waveguide given in [13]. In [11], the phenomenon of

“anomalous bending losses” in the optical dielectric ridge

waveguide is reported. This consists in the appearance of a

minimum in the loss versus radius of curvature (R) char-

acteristics in a curve guide of finite length.

It was surmised then that the presence of vertical corru-

gations of regular pitch and depth on the side walls of the

ridge are at the origin of this effect. These corrugations

arise from the fabrication process of the waveguides, and

as such their occurrence can be controlled to a certain

extent.

It is well known that the losses by curvature decrease

roughly exponentially with the radius of curvature and

therefore with the actual length of a bend of a given angle.

The corrugations perturb the guided field, causing it to

couple weakly to the radiation spectrum, an effect that

increases with the length of the guide.

In this contribution we analyze the combined effect of

finite curvature and corrugation in the dielectric ridge

waveguide and conclude that the occurrence of the mini-

mum is due to the balance of the two opposite effects over

a fairly broad region of R/A ~. Numerical results, includ-

ing just these two contrasting effects, are in fact in agree-

ment with the experimental results of [11], well within the

scope of experimental and dimensional uncertainties.

In view of application to passive integrated optics and

millimetrics (e.g., GaAs waveguides on a substrate of

GaAIAs), the waveguide aspect ratio is such that the

guided modes can be considered as LSE or LSM rather

than full hybrid. On a straight section of guide, these two

polarizations are not coupled. The presence of the bend,

however, does cause some coupling to occur for relatively

small values of R/A ~, depending upon aspect ratio. This

coupling effect is treated in [17] and is not considered

here; i.e., we retain only the LSE case. This simplification

considerably reduces the details of the analysis and high-

lights the essence of the method.
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The effect of curvature is studied by means of a gener-

alization of the “local modes” technique of [9]. In its

principal form, this approach involves developing the

transverse field (or potential) and its derivative along the

axis of the bend at a given section in terms of the set of

discrete and continuous modes of a straight waveguide of

the same cross section as the curved one. Obviously this set

varies along the bend in general, if the material parameters

and/or the radius of curvature vary, which makes the

technique very flexible indeed.

In its original form, however, the method is not well

suited to handling the problem of radiation except over a

very narrow paraxial beam, and serious convergence prob-

lems arise. We have studied in some depth the generaliza-

tion of the technique, exploring two alternative solutions.

As a result, we present in Section IV a semianalytical,

iterative approach that is easy to implement on the com-

puter and features excellent convergence under very gen-

eral conditions.

The effect of corrugations is studied by means of a

field-matching technique. The corrugation is modeled as a

step discontinuity [14], [15], and by imposing the continu-

ity of the tangential field, expressed in terms of discrete

and continuous spectrum, at the transition between two

contiguous sections, a transmission coefficient for the

propagating waves can be obtained. As a result, the behav-

ior of the EM field along the bend is described by a small

system of integrodifferential equations (typically one or

two), which is solved in conjunction with the field match-

ing to take into account the corrugation.

In fact, the technique presented here is of much wider

application in the microwave and millimeter-wave range,

for instance, to the situation where discrete step discon-

tinuities are deliberately inserted in a bend as matching

elements or impedance transformers.

II. MODES OF THE RIDGE WAVEGUIDE

The spectrum of the ridge waveguide can be described in

terms of the LSE/LSM mode families, derivable from

y-directed Hertzian potentials. Restricting ourselves to the

LSE case, in view of the aspect ratio of the ridge, the field

components are given by

EX = q@II (la)

Ep=tl (lb)

E,= – jupd,YII (lC)

HX = d;yII (id)

~,=p2rI-a;rI (le)

HZ= – j~dYII (if)

where II is the Hertzian potential (II = IIap) and the

appropriate boundary conditions are imposed. The EDC is

defined in each region of Fig. 1:

[1

k 1$11) 2

~1(11) = +11) _ -
e

;0 “

By use of the EDC technique, equations

(2)

(1) reduce to a
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Fig. 1. Cross section of a ridge wavegoide.

simplified .TM form and the detailed expression for field

components, normalization, and continuous spectrum are

given in Appendix I.

HI. THE BEND PROBLEM

By means of the EDC technique, the 3-D problem of the

bend in Fig. 2 has been reduced to a 2-D one, as shown in

Fig. 3, where the geometry of the bend is also defined.

It is now important to introduce the concept of “local

modes” [9] at an arbitrary cross section z = ZO. These are

defined as the eigenfunctions of a straight guide whose

cross section is the same as that of the curved guide at

z = ZO. As such, they are solutions of the wave equation

X+. +( ’ek:– P:)+,l = o (3)

in each piecewise homogeneous region and where it is

explicitly noted that

e,=<,(z) (4a)

+n=!n(~, z). (4b)

However, if the radius R is assumed constant, and C. is

also constant, then ~n is also constant with z.

The more general form above is useful in cases where

the geometry loss (or gain) of the guide is not uniform in

z. Let @ denote a scalar component of the global field. In

our (TM) case it represents the magnetic H} component

(E, in the TE case); both the latter and its z derivative can

be expanded in terms of the $,, as

$= : c.+”+ z Jmq(x)$(x)dx (5)
~,=—~ ~=+ o

d+

dz =
– j ? PXU$V

~z_N

– j ~ fmP~(x)CP(x)!(x)dx (6)
~=+ o—
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where x denotes the continuous index, and v and p20

denote waves traveling in the positive and negative z

direction, respectively. C,, CP(X) are the unknown ampli-

tudes of the “local modes” rjVe + (x), respectively. Equa-

tion (5) follows directly from completeness; (6) is an

important consequence of the property of the modes to be

local solutions of the wave equation.

Equating identically the z derivative of [5) to (6) and

using the wave equation for ~, the following system of

integrodifferential equations results:

n=– N... + N (7)

+ ~ ~mSy(U.x)Dw(x)e/R@(Pr,(”)-P,,(x))~x,
,’=+ o

m=+ (8)

where S,,V denotes the coupling coefficient between two

discrete modes, S,,P and S;r. between a discrete mode and
a continuous component, and SP(U, X) between two con-

tinuous components. The D‘s are obtained from the am-

plitudes of the C‘s defined in (5) and (6) by conveniently

collecting the “fast” phase variation, i.e.,

Cn(~)=D.(@)e-~y’ (9)

Cp($’X)=~p(+,x)e-/~P(xjR+ (lo)

where

(11)

P;(x) =4;+x2 R,=-bn. (12)

Details are given in Appendix II.

IV. SOLUTION OF THE INTEGRODIFFERENTIAL

EQUATIONS

The system of equations comprising (7) and (8) is in-

tegrodif ferential of the first order and in principle it can be

solved by various techniques. The difficulty consists in the

fact that (8) depends on a continuous index x and, as

such, corresponds to a continuous infinity of equations. It

may be useful to consider briefly the approaches that were

attempted.

In [9] the method of discrete sampling over the anges of

radiation was originally proposed. In practice, it is found

that the resulting large system of discrete equations is

numerically unstable for all but a small number of sam-

pling angles, ideally centered around a paraxial beam. We

also tried the method of a discrete integral transform of

the continuous spectrum by means of weighted Laguerre

functions, as originally described in [16] for application to

discontinuity problems. While numerically more stable

than the preceding one, this approach also shows poor

convergence in the case of small differences of refractive

indices.

The approach we eventually followed, with satisfactory

results under all conditions, is the contraction and iterative

solution of the system, as described below.

The following nonessential simplifications are now in-

troduced for the sake of clarity.

a) We consider a single guided mode.

b) Reflected waves are neglected for both the discrete

and continuous spectrum.

Moreover, the following essential simplification is physi-

cally well justified, namely, that the weak coupling of the

continuum to itself is neglected.

The system comprising (7) and (8) is then reduced to

D((+) =~~S1(X)D(X, @)e-JR[B(X)-8’lodX (13)
o

D’(X, @)= SjO(X)Dl(@)e-lR[ 6’-P(x)]o. (14)

The index o (odd) has been introduced in order to point

out that the fundamental even mode excites the odd com-

ponents of the continuum spectrum only.
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We integrate the second equation above, obtaining

D(X, I$) =~”SjO(X)Dl(r)e-~ R[P’-6(x)]rdI +D(X, +O)
‘#’o

(15)

where *O denotes an initial angle, which we normally

assume to be zero, with D(x, O) = O. We are now in a

position to substitute (15) into (13), obtaining an integro-

differential equation for the guided mode only:

D{(+) =JmS+o(x)[~D1(oe-JR[pl-B(x)]{d(
o 0 1

. e-~~[fl(x)-flll+,dx. (16)

The integral over ( in the angle interval O < ( < + is

carried out in a convenient, semianalytical iterative manner,

This is done by dividing the interval into N equal subinter-

vals of width A@, so that rp = NA@, and assuming the

following linearization of the unknown amplitude DI over

each interval n (1 < n < N):

D1. (~)= a.+ b.[1–(n–l)A@]. (17)

In particular, we have

D[H(nA@)= b.. (18)

Owing to the above linearization, we obtain from (16)

b,, =Jms+o(x)sio(x)
o

[/“ i “’A+ [a~+b~(~-(n-l)A@)]
~1=1 (,,, –l)Acj

I.e–/W –P(x)]( d{ ~–JR[F(x)–6,]n@ dx. (19)

Equation (19) now lends itself to simple quadrature, lead-

ing, finally, to an iterative expression that links the coeffi-

cients a,,, b,,:

{

n—1

b,, = a,,lo-ull. + ~ [b~(.l._~-.ln+l_~)]
??1= 1 )

.I{l-A+ZO-[.JO-JI]} (20)

where al = 1 is the initial amplitude of the guided mode,

and the expressions for J. and In are reported in Appen-

dix III together with the detailed derivation of (20) from

(19). For a smooth curve, the linearization (17) can be

further simplified:

a n+l = b~A++ a.. (21)

The above, together with (20) and the initial condition

a ~=1, is sufficient to determine all the amplitudes a ~, b..

In the presence of corrugation, however, an becomes

discontinuous at each change of width as

a ~+,=T(b~A@+a~) (22)

where T is the transmission coefficient from a section to

the next to be determined in the following.

It is noted that the above procedure lends itself to easy

numerical evaluation and is stable with respect to the

variation of geometrical and material parameters.

V. THE EFFECT OF CORRUGATION

As mentioned in the Introduction, the fabrication pro-

cess of ridge waveguide creates a vertical corrugation on

the side walls of the ridge, as shown in Fig. 4. Again by use

of the EDC technique, one is reduced to the equivalent

structure of Fig, 5, which illustrates the geometry under

consideration.

The pitch of the corrugation normalized to wavelengths

is such that it is possible to identify the angle interval A@J

employed in the integration of Section IV with the angular

in”terval corresponding to the pitch over the radius of

curvature, i.e., the angle that corresponds to a single corru-

gation, though this identification is not essential. The

corrugation depth is roughly the same as the pitch, so that

it can be considered as a small step discontinuity, i.e., such

that reflected waves can be neglected, again, a nonessential

simplification. With reference to Fig. 6, let us consider a

discontinuity at z = Z. in passing from a section of width

2d to one of width 2D; the tangential field in z = ZO and

in z = z;, can be expressed as

ol===~ =c, (z; )+l[(x)+ ~mc’(z; jx)+f(x, x)dx

+jmco(%x)+:(x,x)dx (23)
o

+I,=,J =c~(z; )$~.(x)+ ~mc’(z; ,x)t;(x, x)dx

+jmco(zhx)i$(x,ddx (24)
o

where the superscript e means even and o means odd, so

that *~(X> x), ~~(x, x), if(x, x), I);(x, x) represent the
even and odd continuous components on the left (1) and

the right (r) of the transition respectively, and ~ ~1,~1,

denote the corresponding discrete modes at the two sides

of the discontinuity.

By imposing continuity of the tangential field in z = Zo,

and using the orthonormality properties of the modes, it is

possible to write the expressions for the amplitude of the

“local modes”:

()$11+1,
Cl(z; ) =C,(z;) —

+p’(z:x)(
Wx)h.

)
dx (25)

E

()

+,,+;(x)
C’(ZJ, X) =Cl(z; ) + c’(z; ,x) (26)

6

C“(z:, x) =C”(z; ,x) (27)

where the bracket symbol ( . . . ) denotes integration in the

range –co<x<+ co.
It is noted that in the application considered here, the

amplitude of the (even) continuum excited by the discon-

tinuity is at least three orders of magnitude smaller than

that of the guided mode. It is permissible therefore to

neglect the interaction via the continuum between succes-

sive steps.
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Fig. 4. Photograph showing edge corrugations of a ridge waveguide.
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edge roughness.
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The transmission coefficient of the transition between

two contiguous piecewise uniform sections for the funda-

mental mode is therefore given by

(28)

This transmission coefficient is required in (22), which is

then employed together with (20) in order to find all the

values of a,,, b,, iteratively for a corrugated guide.

VI. EXTENSION TO OVERMODED WAVEGUIDE

With a procedure quite similar to the one described in

Section IV, the iterative method can be extended to a

waveguide which can support two or more modes. Let us

consider, in particular, the bimodal case, where the funda-

mental (even) mode and first higher order (odd) mode are

propagating. Under the hypothesis of negligible coupling

between the continuous components of the spectrum, the

differential equations for the odd continuum, excited by

the fundamental mode, and the even continuum, excited

by the second mode, can be eliminated analytically, in a

manner analogous to that described in Section IV.

After substitution, two coupled differential equations

for the surface waves, analogous to (16), are obtained. An

appropriate linearization, of the same kind as in (17), for

the unknown amplitudes D1 and D2 over each interval is

introduced, leading to a system of linear equations which

generalizes (19).

The final iterative expression corresponding to (20) has

the following matrix structure:

[: STJ!]=[:l‘2’)
where

Ell = E:2 =1
n (30a)

E1’2 = _ A$~e-l(fi,-fl,)RnA@
)1

Bl
(30b)

E2~ = – &j~e-J(p, -B2)RnA$
n (30C)

with

where the indices 1 and 2 refer to the corresponding

modes.
Equation (29) has to be used in conjunction with the

following one, describing the effect of the step discontinu-

ity:

and ~he initial condition a~ =1, a; = O.

All the elements 1!, ~~ are reported in Appendix III, T1

has the form (28). The elements I,;, <~, T2 are obtained

from the ones relative to the first mode replacing the

corresponding parameters of the second mode and the odd

cent inuous spectrum with the even continuous spectrum.
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VII. RESULTS

A computer program has been developed in order to

analyze the corrugated curved ridge waveguide. The fol-

lowing parameters were assumed in the calculations:

nl=l

n2 =3.44

n3 =3.4

t = 0.6 pm

h=lpm

2f2’=1.5pm.

Both the depth and the width of the corrugations were

taken as 100 nm, for a 90° bend. The resulting waveguide,

for A ~ = 1.15 pm, is monomode.

In Fig. 7, the behavior of the field along the bend is

shown for structures with radius of curvature R = 50A o,

without and with material losses (attenuation coefficient

2P” = 4.8 cm-1, and without and with corrugations. It is

noticeable how, for a short arc length, the effect of corru-

gation is negligible; oscillations of the amplitude of the

fundamental mode are due to a back coupling of the

continuous spectrum with the guided mode itself: this

phenomenon is quite evident if the material is ideal, while

even small losses prevent energy from going back into the

guide.

The effect of material losses is now examined: a small

negative imaginary part of the same magnitude was intro-

duced in both n ~ and n ~ to give a prescribed imaginary

part of the propagation constant of the surface wave along

the z direction (~= /3’ – j~”); 2~” = 0,2,4.8,8 cm-l.

The amplitude of the fundamental mode for a R = 50A0

guide is reported in Fig. 8 for the above values of ~“.

The amplitude of the guided mode in a material with

low losses (2~” = 4.8 cm-1) is given for bends of various

radii of curvature, neglecting corrugations (Fig. 9) and

considering corrugations (Fig. 10). As previously men-

tioned, as the radius R increases, the effect of corrugations

is increasingly noticeable. ‘

In Fig. 11 the radiation pattern at the onset of the bend

shows the preferential angles of radiation from which

energy is lost: angles are considered from the tangent to

the guide.

In order to make a comparison with experimental data,

a ridge waveguide with the following characteristics was

analyzed:

nl=l

nz =3.44

n3 =3.35

t = 0.4flm

h = 0.8pm

2d=3pm,

The depth and the width of corrugations were assumed to

be 70 and 100 nm, respectively, which is of the right order

of magnitude of the actual geometry. A small negative

8~
0 0.00 20. rM3 60.00 60.00 80.00

( Degrees)

Fig. 7. Amplitude of the field versus arc length for a bend with R =

50A(). Without materiaf losses and (a) without and (b) with corruga-
tions. With material losses and (c) without and (d) with corrugations.

i?
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-:

;0

g

-5
:

8
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0.00 70. OQ 40. OD 60. GO 80.00

( Degrees)

Fig. 8. Amplitude of the field versus arc length for a R = 50A0 and
different materiaf losses: (a) /3”= O. (b) ~“ = 2. (c) /3”= 4.8.

(d) ~“=8 /3” in cm-l.

0.00 20.00 40. DO 60.00 80.00

Fig. 9, Amphtude of the field versus arc length for bends with various

radii of curvature without corrugation.

imaginary part was introduced in n*, n ~ in order to get an

attenuation coefficient 2P” = 6.9 cm– 1, for A ~ = 1.15 pm.

Such was the structure experimentally investigated in [11].

With these dimensions, the guide supports in fact three

LSE modes, the (even) fundamental, the (odd) first higher

order mode, and the (even) second higher order mode. As

the latter does not couple directly to the fundamental

mode, the effect of its presence is negligible.

With respect to ‘the monomode guide, a different loss

mechanism for the fundamental mode (the only one pre-

sent at the beginning of the curve) can be observed. In the
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Fig. 10. Amplitude of the field versus arc length for bends with various
radii of curvature with corrugation.

//

7,

Fig 11 Radiation pattern at onset of bend.

I I
0.00 20.00 40. oO 60. o0 80.00

( DCWYX?, )

Fig 12. Amplitudes of (a) the fundamental and (b) the frost higher
mode for a corrugated bend with R = 400A”,

previous case, in fact, bending losses were due entirely to

the strong coupling between the surface wave and the

(odd) continuum. In this case, however, the stronger cou-

pling between the fundamental mode and the first higher

order (coupled by curvature), as well as the coupling

between the first higher order and the (even) continuum,

dominates.

In Fig. 12 this effect is shown: the moduli of the

fundamental and first higher modes are plotted as a func-

tion of the arc for a corrugated bend with R = 400A0.

In Fig. 13 the losses versus radius of curvature are

finally reported for various values of the depth of corruga-

I <1

,

81 0/
h

‘, -

. -

4-

.
lCQ 7C0 303 v.

B/k,

>(D–d) = 0.0! w : curve a

= 0.05 .“) e“,., b

= 0.04 m : curve c

= 0.03 “m : CUrvc d

= 0 ,. . . . . . .

.0,. ..=., f (“o .aterlel 10ss.s1

0 . .Xperlment

Fig. 13. Losses as a function of radius of curvature: numericat results
for waveguides (a) without and (b) with corrugations. Dots represent

experimental data from [11].

tion, 2( D – d). In particular, curve e refers to the structure

without corrugations and f gives the losses due to radiation

only (no corrugations, no material losses). Dots represent

experimental data inferred from [11] after subtracting the

remaining overall experimental losses (i.e., input and out-

put coupling), these were estimated at – 11.5 dB, but their

actual magnitude is uncertain. Also uncertain are the pitch

and the depth of corrugation of the actual structure. A

minimum value of the losses corresponding to an optimum

radius of curvature can be noted when the effects of

curvature and corrugations are balanced.

VIII. CONCLUSIONS

We present a development of the “local modes” tech-

nique which is capable of handling finite, tight bends in

open dielectric waveguides of the LSE— LSM type, to-

gether with step discontinuities along the arc. By analytical

manipulation of the continuum, the approach results in a

small system of coupled integrodifferential equations, one

for each discrete propagating mode. The latter system is

solved analytically by means of an iterative approach to

the point where it can be implemented on a desktop

computer.
The method was applied to the curved, corrugated,

dielectric ridge waveguide, yielding numerical results in

general agreement with published experimental points. The

technique is equally applicable to other curved open trans-

mission media in the microwave, millimetric, and in-

tegrated optics ranges.
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APPENDIX I

A. Surface Waves

If regions I and II in Fig. 1 are taken to be infinitely

long in the x direction (d.= O), we have two layered

asymmetric slab waveguides, and the field components are

given by

E;(10 = @lO( ~) (Ala)

(Alb)

—~y@l(ll)(Y)~-1(11) = – ~ (Ale)
up

where

[

A~(II)cos ( k~(II)y) + A~(lI) sin ( k~(II)y),

o ~ Y ~ h(z) (A2a)
@lO( ~) =

@(II)e-Y?ll)@Y 2(1)),
Y ~ M(2) (A2b)

~I(II)e+#’)y, y<o. (A2c)

By applying the boundary conditions for EX and HZ, the

eigenvalue equations for even TE and odd modes are

obtained, and from the wave equation, the conservation of

wavenumber results:

In order to analyze the x variation ( dY = O) using the

concept of EDC, we consider the following fields:

(A4a)

(A4b)

HY=Y(x) (A4c)

where

{

Aecos(kXyX),
*(X) = lX1 <d (A5a)

A’cos(kXd) e-y~lx-dl, 1x1> d

for even modes, and

{

A“sin(kyx), Ixl<d

‘P(X) = 1X1
—A”sin(kyd )e-Y’l-x-~l, ]xl>d

(A5b)

x

for odd modes.

Boundary conditions for E= give the eigenvalue equa-

tions for TM even and odd modes, which, in conjunction

with the following expressions, obtained from the wave

equation
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allow the determination of propagation constants and field

configuration for the surface waves.

The normalization constant A’(o) is evaluated by the

requirement

J
+m V2(X)

—dx =1
—w e,(x)

(A7)

to be

I ,

(A8)

where the sign + is for even modes and sign – is for odd

modes.

B. Continuous Spectrum

The continuous spectrum, together with the surface

waves, constitutes a complete representation of the field in

the slab. HY is given by HY = ‘I’(x, x), where

[f
: cos[x(x+d)–se],

I x<—d

r~H< cos[x(x–d)+ae],
v

( x>d

with

s2=x2+(c~–&I)k;, o<~<cc

.,=/-

ae=tg-’[[a’g(’d)l
for even TM components and

r~ II

— < cos[x,(x+d)+cq],
T

x<–d

r~11 1
e

— — sin(sx),
17 co

–d<x<d

I_
~11

< cos[X(x–d)–aO],
n’

x>d

(A9a)

(A9b)

(A9c)

(AIOa)

(AIOb)

(A1OC)

(Alla)

(Allb)

(Allc)
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with

S2=X*+(+C:)IC; , O<x<cc

.O=/=
~o=tg-l[[x]cotg(sd,]

for odd TM components.

APPENDIX II

For the system of local coordinates of Fig. 2,

the wave equation can be written as

(A12c) + x /m[Bi(x)c,(x) +(x)+ B,(x) c;(x)*(x)
~=+ o—

+pM(x)cp(x)*’(x)] (’ix
}

After differentiating (5) with respect to z, equating it to

(6), and recalling (A13),

N

(A13) + ~=; NQx+v+ z JmQx)d..!(x)dx=o.~=+ o—
(A17)

Multiplying (A15) by tj~ /~ ,(x) and integrating and simi-

(A14) larly for (A17), using the following orthonormality proper-
ties for “local modes”:

(A18a)

,,=[ N(C;+ NW.)+.

()

+),+(x) DO
(A18b)

Ce

where the prime indicates differentiation with respect to z.

Substituting (5) and (6) together in the wave equation

(A14), yields

we obtain

~ (c’:+ .iRB.C.)
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Recalling that ~_” = – By, upon adding and subtracting

(A19a) and (A19b) we obtain the integrodifferential equa-

tions for the amplitudes of the surface waves:

(A20)

where n=– N,. ..1, l,l,. ... Nand

(A21a)

Two equations similar to (A19a) and

achieved by multiplying (A15) and (A17)

(A21b)

(A19b) can be

by t(u)/~,(x)
and integrating, using again the orthonormality properties

(Al 8); hence by adding and subtracting, the integrodif-

ferential equation for the amplitude of the continuous

spectrum is obtained:

C;, (o)+jRB., (u)c,.(u)

where m = + and

(A23a)

,. (w::(x))S,(o, x) = – ; J3p(x)

()$!’(o)+’(x) + p;(lJ)
+

‘%i’(”:;
“w(”)::(x))
‘w”)::(x))] ‘A23b)

APPENDIX III

By evaluating the integral over J in (19) we obtain

h,, = i [~.l(~n-.l–~n+l-m)
/?1=1

+ bmA@l,,_m + bm(~._m – ~n+l-rn)] (A24)

where

J
~~j[B1–B(x)l~~A@

Jn, = S;(X) S{”(X) dx. (A25b)
() [~1–/3(x)]2R2

Recalling that

awl+ b~A$=av, +l (A26)

(A24) can be expressed as

n

m=l
(A27)

which becomes

b,, [l– A@IO–(JO– Jl)]

?7–1

=a,,IO– alZ,, + ~ b~(~,_~–Jn+l_,n) (A28)
m=l

leading to (20).

Integrations (A25) cannot be performed merely by

numerical techniques, owing to an integrable singularity in

S~’’(X) and because the exponential term can be a rapidly

oscillating function; on the other hand, asymptotic evalua-

tion, with the method of say, stationary phase, gives inac-

curate results.

However, operating a change of variable

X=n2kOsin6 (A29a)

/l(x) =n2kocose (A29b)

the singularity in S(O(X ) is removed and, restricting in-

tegration to propagating waves only, the domain becomes
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0<0< ~/2. This truncation does not affect in practice the

values of the integrals because the integrand involving the

evanescent components of the continuous spectrum is

several orders of magnitude smaller than that involving the

propagating components.

Subdividing the interval of integration into L subinter-

vals ( A9 = 7r/2 L ), equations (A25) can be written as

(A30)

where

sf(d)s;”(o)n2ko coso
f’(8) = _ j[~l–it2kOc0s O]R

(A31a)

s:(e) s;”(e) n2kocoso
fJ(8) =

[&- n,kocose]’R’ “
(A31b)

If in each subinterval (1 – 1) A13<0<1 Af3, we assume a

linearization of (A31a) and (A31b),

with constants Al, Bl, the integral (A30) can then be easily

evaluated in a closed form. The value of L is chosen so as

to obtain the best fit in (A32).
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